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Abstract Poly (ethylene glycol)-co-(;-Lactic acid) diacry-
late (PEG-PLLA-DA) copolymers have been extensively
investigated for a number of applications in medicine.
PEG-PLLA-DA is biodegradable and the human body can
process its degradation products. In this study, we describe
the autofluorescence of PEG-PLLA-DA copolymers and
compared it to the fluorescence of poly(ethylene glycol)
diacrylate (PEG-DA) and the precursor molecules used for
their synthesis. In addition, we examined the influence of
pH on the fluorescence spectra. We found that PEG-PLLA-
DA exhibits higher fluorescence than PEG-DA and all
reagents involved in the synthesis of PEG-PLLA-DA. The
fluorescence of PEG-PLLA-DA was affected by pH with
fluorescence decreasing at high pH values. At high pH,
PEG-PLLA-DA could not polymerize into hydrogels and
exhibited a dramatic decrease in autofluorescence, suggest-
ing that hydrolysis of the ester bond affected its autofluor-
escence. At low pH, PEG-PLLA-DA exhibited higher
fluorescence and it was able to form crosslinked hydrogels.
The autofluorescence of PEG-PLLA-DA could be exploited
to monitor polymer degradation and material structure

Y.-C. Chiu - E. M. Brey

Department of Biomedical Engineering,
Illinois Institute of Technology,
Chicago, IL, USA

E. M. Brey
Research Service, Hines Veterans Administration Hospital,
Hines, IL, USA

V. H. Pérez-Luna (<)

Department of Chemical and Biological Engineering,
Illinois institute of Technology,

10 West 33rd Street,

Chicago, IL 60616, USA

e-mail: perezluna@jiit.edu

without the need to introduce exogenous fluorescent probes.
The origin of fluorescence is not clear at this point in time
but it appears to result from a synergetic effect of both
lactate units and diacrylate groups in the PEG-PLLA-DA
backbone. The observed autofluorescence of PEG-PLLA-
DA persists after reaction of the acrylate groups in the
polymerization reaction. This autofluorescence is advanta-
geous because it could assist in the study of polymers used
for drug delivery and tissue engineering applications.

Keywords Autofluorescence - Hydrogel - Poly (ethylene
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Introduction

Polyethylene glycol diacrylates (PEG-DA)-based polymers
are important hydrogel precursors commonly investigated
for tissue engineering, drug delivery and regenerative med-
icine applications. PEG-DA materials are biocompatible and
resistant to protein adsorption [1, 2]. PEG-based materials
can be made degradable by hydrolysis by incorporation of
poly(;-Lactic acid) blocks into the PEG backbone to gener-
ate PEG-PLLA-DA copolymers (Fig. 1) [3-5]. This ap-
proach allows degradation of polymers that have been
investigated for applications in drug delivery[6], bone fixa-
tion devices[7], and cartilage repair [8]. Although there are
clinical studies on the use of PEG-DA and PEG-PLLA-DA
hydrogels as biomaterial scaffolds, there continues to be
significant basic research examining the materials underly-
ing properties and performance in biomedical applications.
Despite this research, to our knowledge there have been no
studies to examine the intrinsic autofluorescence of these
materials.
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The incorporation of fluorescent markers into biomateri-
als is often used to assist in the study of drug delivery [9],
imaging of material structures [10], and measuring degrada-
tion rate of biodegradable materials[11]. A common ap-
proach is to incorporate fluorescent probes into the
materials to monitor release kinetics and degradation [12,
13]. However, the incorporation of these probes is challeng-
ing in terms of achieving efficient and extensive labeling of
the material, they may alter material properties and often
results in some toxicity. A hydrogel possessing intrinsic
fluorescence would make these studies more convenient
and would eliminate potential artifacts that could arise in
the process of introducing fluorescent labels.

In this work, the autofluorescence of PEG-DA, and PEG-
PLLA-DA are reported. Interestingly, none of the building
blocks of these polymers, including lactic acid (LA), PEG,
PEG-PLLA or acrylate (measured as acrylic acid(AA))
exhibited significant fluorescence. The fluorescence of
PEG-PLLA-DA is significantly affected by pH. This auto-
fluorescence could allow for the noninvasive monitoring of
PEG-PLLA-DA hydrogel structure and degradation without
resorting to exogenous fluorescent molecules. The findings
on the intrinsic fluorescence of these important biomaterials
could prove useful for imaging and measuring the degrada-
tion of those hydrogels in tissue engineering applications.
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Experimental
Materials and Methods

PEG (Mn=3400), acryloyl chloride (98%), triethylamine
(99.5%), 3,6-dimethyl-1,4- dioxane-2,5-dione, acrylic acid,
and 2-hydroxy-2-methylpropiophenone (Irgacure 1173)
were obtained from Sigma (St. Louis, MO). Sodium chlo-
ride (99.5%), microscopy slides, quartz cell, dichlorome-
thane (99.9%), and ethyl ether (anhydrous) were from
Fisher Scientific (Pittsburgh, PA).

Synthesis of PEG-PLLA-DA

Synthesis of PEG-PLLA and PEG-PLLA-DA was based on
the procedures originally developed by Hubbell [3] as
described by Chiu et al. [14]. All glassware and stir bars
were cleaned and dried in a vacuum oven at 120 °C for 24 h
prior to use. The following procedure was implemented for
a 10-gram synthesis of PEG-PLLA. Ten g of PEG mixed
with 2.12 g of 3,6-dimethyl-1,4- dioxane-2,5-dione were
lyophilized overnight. The lyophilized PEG, 3,6-dimethyl-
1,4- dioxane-2,5-dione and 40 pL of stannous octoate were
placed in a round bottom flask. The flask was filled with
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argon and subjected to vacuum three times in order to ensure
the absence of trace water and oxygen. In order to perform
the reaction at a uniform temperature the entire flask was
submerged in an oil bath. The temperature of the oil bath
was brought to 140 °C and the mixture was allowed to react
for 4 h. The resulting products were dissolved in 40 mL of
dichloromethane, filtered with glass fiber filter (GF/F,
Whatman, Maidstone UK) and precipitated in ice cold ethyl
ether three times.

To synthesize PEG-PLLA-DA, 10 g of PEG-PLLA were
lyophilized and placed into a three neck round bottom flask
with 60 mL of dichloromethane. Two moles of triethylamine
per mole of PEG-PLLA were added into the flask and stirred
for 5 min under an inert Ar gas atmosphere. Next, four
moles of acryloyl chloride per mole of PEG-PLLA were
added dropwise and reacted overnight in the dark under Ar
gas atmosphere. The resulting products were washed with
5 ml of 2 M K,COj3 and then precipitated into 2 L of ice-
cold ethyl ether to remove the residual acryloyl chloride.
The extent of reaction, structure and purity of the products
were verified by Fourier Transform Infrared Spectroscopy
(FTIR) (Tensor 27 FTIR; Bruker; Billerica, MA) and proton
Nuclear Magnetic Resonance 'H NMR (Advance 300 Hz;
Bruker, Billerica, MA). To perform "H NMR, the products
were dissolved in CDCl; with 0.05% v/v of tetramethylsi-
lane (TMS) added as an internal calibration standard.

Hydrogel Preparation

Unless otherwise noted, all reagents were dissolved in
deionized (DI) water obtained from a Millipore system
(conductivity was greater than 18 M2 cm). The hydrogel
precursor solution consisted of 11.63 mM PEG-PLLA-DA
and was prepared by dissolving 50 mg of PEG-PLLA-DA
(Mw=4300) in 1 mL of DI water. Irgacure 1173 (0.5% w/v)
was added to the precursor as the photoinitiator. Two and a
half mL of precursor were placed in a quartz cuvette and
polymerized under UV light (365 nm) for 5 min. Hydrogels
were measured for emission spectra immediately after poly-
merization. Thin hydrogel slabs for absorbance

measurements were prepared between two quartz slides by
using microscope coverslips as spacers (thin hydrogel slabs
were needed because the hydrogels exhibited strong absor-
bance). Six hundreds pL of precursor were injected between
two quartz slides and polymerized under UV light (365 nm)
for 5 min.

Fluorescence Measurements

The absorbance and emission spectra of the different
reagents: macromers, hydrogel precursors and hydrogels
were performed in quartz cuvettes. A solution of 3,6-di-
methyl-1,4- dioxane-2,5-dione was prepared in DI water
and stored at room temperature for 3 days to allow complete
hydrolysis to lactic acid before measuring the emission of
fluorescence. The pH of solutions was adjusted to acidic and
basic conditions using 1 N HCI and 1 N NaOH respectively.
The fluorescence of samples was measured using a
FluoroMax-3 spectrofluorometer (Horiba Ltd. Edison,
NJ) using a excitation wavelength of 355 nm. The
absorbance of these samples was also measured using
a UV-2401 Shimadzu spectrophotometer using DI water
as blank.

Monitoring of PEG-PLLA-DA Hydrogel Degradation
Though its Intrinsic Fluorescence

Hydrogels for degradation studies were synthesized by po-
lymerizing 200 puL of hydrogel precursor solution in 48 well
plates using UV light (365 nm) for 5 min. After polymeri-
zation, the hydrogels were incubated in 1 mL PBS and
stored in 37 °C. The supernatant solution was removed
and replaced with fresh PBS every other day. The gel and
removed solution (containing degradation products) were
placed in 48 well plates respectively and their fluorescence
was determined using a Microplate spectrophotometer
(Spectromax, Molecular devices, Sunnyvale, CA) with ex-
citation 355 nm and emission 460 nm. Data were subtracted
from a PBS blank control.

Fig. 2 (a) Absorbance spectra, a b
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Generating Porous PEG-PLLA-DA Hydrogel

Porous PEG-PLLA-DA hydrogels were prepared using a
salt leaching procedure. A 58.15 mM solution of PEG-
PLL-DA polymer precursor was prepared using 250 mg of
PEG-PLLA-DA polymer dissolved in 1 mL of dichloro-
methane. Irgacure 1173 was added as a photoinitiator (5%
(w/v)). Two hundreds and 50 mg of sieved salt (150-
100 pm) and 250 mL of precursor were placed in a 1.5 ml
centrifuge tube. The tube was vortexed for 45 s and placed
upside down allowing the salt to settle in to the cap for
1 min. A microscope slide was used to cover the solution,
carefully avoiding bubble formation. The solution was
then polymerized by irradiation under UV for 10 min.
The sample was then rotated and polymerized for an
additional 10 min. The microscope slide was removed
and the dichloromethane allowed to evaporate overnight.
The resulting gels were placed in a 50 mL sterile
centrifuge tube with 20 ml DI water containing 4 mg/
mL of gentamicin sulfate (to prevent microbial growth),
and then immediately exposed to a vacuum (0.035 mBar)
for 15 min to remove air trapped in the porous gels.
The water was changed 4 times for 1 day to completely
leach out the salt crystals. In the salt leaching process,
the degree of hydrolysis of the porous hydrogel was
considered to be very minor and did not affect fluorescent
intensity of the porous hydrogel.

220
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260 280 300 320 340 360 380 400
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Confocal Imaging of Pore Structure

The porous PEG-PLLA-DA hydrogel was imaged using a
PASCAL laser scanning microscopy system from Carl Zeiss
Microlmaging, Inc. (Thornwood, NY). A 488 nm laser was
used as the excitation source and a 505 nm low pass filter
was used for the emission of fluorescence. Images had x and
y resolution of 3.5 um/pixel and z resolution of 20 pum/
pixel. The serial confocal images were exported into Axio-
vision 4.5 (Carl Zeiss, Gottingen, Germany) for reconstruc-
tion into 3-D images.

Results and Discussion

To the best of our knowledge, the intrinsic fluorescence of
PEG-PLLA-DA polymers has not been reported previously.
The absorbance spectra of a hydrogel prepared using
11.36 mM PEG-PLLA-DA shows a broad shoulder peak
from 310 nm to 360 nm (Fig. 2a). The fluorescent emission
spectrum of this hydrogel shows a broad peak over a long
range of wavelengths with the peak maximum occurring
around 410 nm. The characteristics of this broad emission
peak indicate that the observed spectrum is not due to
scattering from the sample but most likely is due to fluores-
cence (Fig. 2b). By creating hydrogels within a quartz
cuvette and between quartz slides without interfaces due to

Fig. 4 a Emission spectra of a b
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shrinkage or bubbles, it was possible to minimize scattering
in these measurements. These measurements of absorbance
and emission spectra indicate that there is autofluorescence
of PEG-PLLA-DA hydrogels (Fig. 2).

In order to investigate the origin of the autofluorescence
of PEG-PLA-DA hydrogel, all reagents used in the synthe-
sis of PEG-PLLA-DA hydrogel (PEG, PEG-PLLA, LA, and
AA) were characterized by optical absorption spectroscopy.
Both PEG-DA and PEG-PLLA-DA were characterized by
optical absorption spectroscopy as well. All solutions used
for these measurements had identical molar concentrations
(11.6 mM) except AA, which had twice the molar concen-
tration of the others due to the presence of two moles of
acrylate per mole of PEG-PLLA-DA. The absorption spec-
tra of diluted solutions of PEG or PEG-PLLA, 11.6 nM, did
not show significant absorbance peaks from 190 nm to
240 nm wavelength range (Fig. 3a). However, PEG-DA,
PEG-PLLA-DA, lactate, and acrylic acid, all showed signif-
icant absorbance in the 190-240 nm wavelength range. At
this low concentration (11.6 nM) there was no significant
light absorption above 240 nm for any of these reagents.
The absorbance spectra of more concentrated solutions,
11.6 mM, shows that both PEG-DA and PEG-PLLA-DA
exhibit strong light absorption in the 300-370 nm wave-
length range while the molecules used for their synthesis
show no absorbance in this region (Fig. 3b). The presence of
those absorbance peaks support the hypothesis that auto-
fluorescence of PEG-DA and PEG-PLLA-DA is observed
when these materials are excited using 355 nm light. How-
ever, the fact that the precursor molecules for synthesis of
PEG-DA and PEG-PLLA-DA do not exhibit such strong
absorbance nor fluorescence appears to indicate that there is
a synergistic effect of these molecules that gives rise to the
fluorescence of PEG-DA and PEG-PLLA-DA.

The emission spectra indicates that PEG-PLLA-DA has
25 times stronger fluorescence than PEG-DA (Fig. 4a) and
that PEG-PLLA-DA has 100 times stronger emission inten-
sity than acrylic acid, lactic acid, PEG or PEG-PLLA
(Fig. 4b). Although the acrylation of either PEG or PEG-
PLLA significantly increases autofluorescence, this increase
is substantially larger with PEG-PLLA. This indicates that
the there is a synergetic effect for increasing the autofluor-
escence of PEG- PLLA-DA or PEG-DA when attaching
acrylate groups to PEG-PLLA backbone or PEG.

In order to further investigate the auto fluorescence of
PEG-PLLA-DA, the effect of pH on fluorescence was in-
vestigated. It was found that the fluorescence of PEG-
PLLA-DA solution decreased when the pH was sequentially
increased from a value of pH=5 to pH=9, 11, 12 and 13
(Fig. 5a). The decrease of fluorescence of PEG-PLLA-DA is
likely due to hydrolysis of ester bonds with the concomitant
loss of acrylic groups. This would indicate a role of the
acrylate groups conjugated to PEG or PEG-PLLA in the
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Fig. 5 a Emission spectra of increasing the pH of 11.63 mM PEG-
PLLA-DA hydrogel precursor; b Emission spectra of varying pH of
11.63 mM PEG-PLLA-DA hydrogel precursor from first pHS to 2, 14,
3 and 4.5; ¢ Rescaled emission spectra of Fig. 5b. (numbers in the
spectra indicate the sequence in which the pH was changed 1)

observed fluorescence. To further investigate this process
further, the pH was first decreased from pH 5 to pH 2, which
resulted in a slight increase in fluorescence of the hydrogel
precursor solution (Fig. 5b). If initiator was added to this
solution it was able to polymerize and form a hydrogel,
indicating that the acrylate groups had not been hydrolyzed.
If the pH was instead increased from 2 to 14 the resulting
solution was not able to polymerize after adding initiator.
This indicated loss of the acrylate groups due to hydrolysis
of PLLA. In a third experiment, the pH of the PEG-PLLA-
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Fig. 6 (a) 2 D projection and
(b) 3 D volume renderings of a
confocal image of porous PEG-
PLLA-DA by salt leaching

DA solution was brought back from 14 to 4.5; and the
resulting solution was not able to polymerize after adding
initiator (Fig. 5b and c), indicating that the pH effect, by its
nature of being irreversible when increasing the pH was due
to hydrolysis. These experimental observations support the
hypothesis that hydrolysis of PEG-PLLA-DA resulted in its
loss of fluorescence. It was also observed that the fluores-
cence of PEG-PLLA-DA decreased when the temperature
increased (not shown). These observed changes in the emis-
sion spectra further lend support to the hypothesis that the
images obtained under the microscope and the measure-
ments obtained in the spectrofluorometer are autofluores-
cence and not a light scattering phenomenon.

Given that PEG-PLLA-DA hydrogels exhibit autofluor-
escence we wanted to examine how this can be used to study
degradation and structure of the materials. The ability to
dynamically image and monitor degradable porous scaffold
is especially useful for biomaterials used in tissue engineer-
ing and drug delivery. Although 3-D reconstructed images
can be acquired by selective partitioning of proteins into the
pores of PEG hydrogel [15], the methods to nondestructive-
ly image the architecture of degrading biomaterials under
fully swelled conditions are limited. Given the autofluores-
cence of PEG-PLLA-DA hydrogels, it is possible to study
the architecture of porous scaffolds and degradation of this
material without the need to incorporate fluorescent labels.
Confocal microscopy revealed that the autofluorescence
could be used to provide 2-D (Fig. 6a) and 3-D (Fig. 6b)
images of the porous structures of salt leached PEG-PLLA-
DA hydrogel scaffolds. This observation is promising and
could provide a platform to monitor the architecture of
degrading of PEG-PLLA-DA scaffold in vitro and possibly
in vivo for tissue engineering applications.

In the past, measuring the degradation of PEG-PLLA-DA
hydrogels required either assessing multiple hydrogels sam-
ples at desired time points by mechanical or swelling prop-
erties or incorporating fluorescent probes [16]. In this study,
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the degradation of a PEG-PLLA-DA hydrogel was moni-
tored directly by measuring autofluorescence of the hydro-
gels or fluorescence present in the surrounding solution due
to degradation products in vitro (Fig. 7). This was per-
formed without disturbing the hydrogels or incorporating
fluorescent probes. This study illustrates how the autofluor-
escence of PEG-PLLA-DA becomes advantageous for mon-
itoring in vitro degradation of PEG-PLLA-DA hydrogels
which are under investigation for tissue engineering
applications.

Conclusions

The autofluorescence of PEG-PLLA-DA solutions, poly-
merized hydrogels, and degradation products has been stud-
ied here. The origin of the fluorescence of PEG-PLLA-DA
hydrogel appears to originate for PEG-PLLA with end caped
acrylate groups. This observation is supported by the fact
that the molecules used to synthesize PEG-PLLA-DA or
PEG-DA do not exhibit fluorescence by themselves and that
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hydrolysis caused by increases in pH resulted in irreversible
loss of fluorescence. Both temperature and pH affect the
fluorescence of PEG-PLLA-DA, which indicates that the
phenomenon observed is due to auto fluorescence rather
than light scattering. The intrinsic autofluorescence of this
material can be used to image porous scaffolds in 3-D and
also to monitor their degradation. The autofluorescence of
this material allow studying these systems in situ, thus
permitting to obtain information useful in imaging, drug
delivery and regenerative medicine.
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